Live 3D Imaging Of Early-Embryonic Beating Hearts In Zebrafish | Bitplane

Live 3D imaging of early-embryonic beating hearts in zebrafish

Cell Biology

Dr. Julien Vermot and colleagues, Institut de Génétique et de Biologie Moléculaire et Cellulaire

Figure 1G from paper: The researchers examined the heart and blood flow in zebrafish embryos around the time in development when blood flow began. This image shows the 3D anatomy of a heart at 26 hours post fertilization with its neighboring vasculature and flow direction. Reprinted from Goetz JG, et al., Cell Rep 6(5):799-808.

Researchers from the Institut de Génétique et de Biologie Moléculaire et Cellulaire in France used Imaris software for 3D rendering and analysis of high resolution images of live zebrafish embryo hearts around the time that blood flow first begins. Their research may lead to a better understanding of the causes of cardiovascular defects.

“The roots of the cardiovascular defects observed in adults are still unclear,” says Dr. Julien Vermot, who was part of the research team. “It is possible that some defects come from issues that begin early in life (during development) which impact later functions of the cardiovascular system.”

Formation of the cardiovascular system requires interactions among genes, fluid mechanics, and cellular reorganization. However, scientists know little about the mechanisms responsible for blood flow sensing during vascular development. The researchers wanted to understand more about the function of endothelial cilia in sensing flow conditions as the vascular network is developing.

Measuring blood flow during early development

To understand the flow conditions present when blood flow begins during early embryonic stages, the researchers acquired confocal images of live zebrafish hearts at various stages of development. They used Imaris to reconstruct 3D images, which provided 3-D data and also let them manipulate and view the beating heart in all three dimensions.

“Imaris helped us characterize the 3D motion of the different cell layers that compose the heart,” said Dr. Vermot. Specifically, they viewed various sections of a specific area of the heart’s outflow tract and characterized the cell wall motion in these sections. This analysis revealed that the embryonic heart is not efficient at pumping fluids because the inner cell layer of the heart is not opened at early embryonic stages.

Figure 1A and C from paper: The left images show 3D imaging of the heartbeat in zebrafish embryos at 24 hours, 26 hours, and 28 hours post fertilization. The heart myocardium is labeled green (GFP), and the endocardium and blood cells are red (photoconverted Kaede). The right images show 3D sections of the boxed regions of the heart tube shown on the left. The dashed line in the section from 28 hour post fertilization shows the endocardium opening, and the arrow shows the flow direction. Reprinted from Goetz JG, et al., Cell Rep 6(5):799-808.

The researchers also conducted in vivo correlative light and electron microscopy. Overall, their analysis revealed that, at the time when blood flow begins in the embryo, endothelial cilia deflect at an angle that correlates with calcium levels in the endothelial cells. They also found that changes in shear stress, assembly of the cilia during development, or expression of the PKD2 calcium channel affected the endothelial calcium level as well as increased and perturbed vascular system development.

In future work, the researchers plan to characterize the cellular defects associated with lack of flow sensing. Dr. Vermot says that 3D analysis will be essential for this project because blood vessels are highly complex when viewed in three dimensions.

Research Paper: Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, Charvin G, Liebling M, Wyart C, Schwab Y, Vermot J. 2014. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep 6(5):799-808.

Multimedia Library
Publications Database
Development and validation of a single HPLC method for determination of α-tocopherol in cell culture and in human or mouse biological samples
Description of a new syllid species as a model for evolutionary research of reproduction and regeneration in annelids
Indian Hedgehog Mediates Gastrin-Induced Proliferation in Stomach of Adult Mice
Developmental regulation of glial cell phagocytic function during Drosophila embryogenesis
Mouse Fetal Whole Intestine Culture System for Ex Vivo Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development
The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density
NMDA receptors on zebrafish Mauthner cells require CaMKII-α for normal development
Segmentation and Quantitative Analysis of Individual Cells in Developmental Tissues
Brain on the stage – Spotlight on nervous system development in zebrafish: EMBO practical course, KIT, Sept. 2013
Modelling cell turnover in a complex tissue during development
The expression analysis of Sfrs10 and Celf4 during mouse retinal development
A novel FoxD3 gene trap line reveals neural crest precursor movement and a role for FoxD3 in their specification
The ETS domain transcriptional repressor Anterior open inhibits MAP kinase and Wingless signaling to couple tracheal cell fate with branch identity
Spindle Position in Symmetric Cell Divisions during Epiboly Is Controlled by Opposing and Dynamic Apicobasal Forces
Synchronous and symmetric migration of Drosophila caudal visceral mesoderm cells requires dual input by two FGF ligands
Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest
Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity
Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis
Apelin Is Required for Non-Neovascular Remodeling in the Retina
Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice

Sign up for the Bitplane Newsletter!

Receive articles like this one, release notes, product launches, press releases and more with our regular newsletter. It's free to subscribe, will be sent every 6 weeks, and you can opt out at any time.

NAME
EMAIL


Try Imaris FREE for 10 days?