Labelling & Confocal Imaging of Neurons in Thick Invertebrate Tissue | Bitplane

Labelling and Confocal Imaging of Neurons in Thick Invertebrate Tissue Samples

January 2015

Speakers: Dr Trevor Wardill (Sensory Neurobiologist, Roger Hanlon Laboratory) and Dieter Göhlmann (Support Manager, Bitplane)

 Neuroscience researchers have long sought methods to describe the neural connectivity of the circuits responsible for specific behaviours. 

One major obstacle is scale: Neural spines can be <1 μm in diameter, but axons can range from millimetres to centimetres (or larger) in length, making tissue imaging and neuron reconstruction a challenging task. New tissue-clearing agents and long-working-distance objectives offer improved imaging conditions, and here we present a complete protocol for invertebrate tissue that uses these advances.

In this protocol, tissue-processing steps previously published in separate articles are combined with recent advances in confocal imaging to visualize invertebrate tissue samples that are >500 μm thick and contain dye-filled neurons. The steps describe dye filling, fixing, antibody labelling, clearing, whole tissue mounting, and confocal imaging with matched refractive indexes. Thus, manual sectioning or “flipping” the tissue to image the whole volume is not required.

With matched refractive indexes, loss of resolution and signal is avoided. Tissue volumes are imaged in one stack and nonlinear deformations caused by tissue flipping are prevented. We apply the protocol to whole dragonfly thoracic ganglia (2 × 1 × 0.6 mm) and cephalopod skin samples (20 × 2 × 0.6 mm) with minimal tissue deformation.

The resulting images will be used to develop a three-dimensional connectivity atlas of dragonfly ganglia and cephalopod skin innervation. This protocol can be applied to other invertebrate species, and has the advantage that it avoids problems with antigen specificity.

Key learning objectives:

1. Refractive index matching across immersion medium, coverslip and cleared sample enables excellent image quality and negates the need for post processing warping to rescale images.

2. Rapid clearing with thiodiethanol (TDE) to match refractive indices and shifting the excitation and emission spectrum of antibody secondary labels further enhances signal to noise in fluorescent images.

Multimedia Library
Application Images (7)
Publications Database
PERINATAL HIGH FAT DIET INCREASES HIPPOCAMPAL VULNERABILITY TO THE ADVERSE EFFECTS OF SUBSEQUENT HIGH-FAT FEEDING
HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice
3-D Imaging and Analysis of Neurons Infected In Vivo with Toxoplasma gondii
Rapid neurogenesis through transcriptional activation in human stem cells
Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis
Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO
Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D
Rax regulates hypothalamic tanycyte differentiation and barrier function in mice
Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration
RNA-binding protein Sam68 controls synapse number and local {beta}-actin mRNA metabolism in dendrites
Selective Ablation of Pillar and Deiters' Cells Severely Affects Cochlear Postnatal Development and Hearing in Mice
Enhanced Recruitment of Endosomal Na+/H+ Exchanger NHE6 into Dendritic Spines of Hippocampal Pyramidal Neurons during NMDA Receptor-Dependent Long-Term Potentiation
Relapse Induced by Cues Predicting Cocaine Depends on Rapid, Transient Synaptic Potentiation
Purkinje Cell Ataxin-1 Modulates Climbing Fiber Synaptic Input in Developing and Adult Mouse Cerebellum
Expression of the voltage-gated potassium channel subunit Kv1.1 in embryonic zebrafish Mauthner cell
The Adhesion-GPCR BAI1 Regulates Synaptogenesis by Controlling the Recruitment of the Par3/Tiam1 Polarity Complex to Synaptic Sites
Reinstatement of nicotine seeking is mediated by glutamatergic plasticity
Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
Structural and molecular interrogation of intact biological systems
Cerebellar Output in Zebrafish: An Analysis of Spatial Patterns and Topography in Eurydendroid Cell Projections

Sign up for the Bitplane Newsletter!

Receive articles like this one, release notes, product launches, press releases and more with our regular newsletter. It's free to subscribe, will be sent every 6 weeks, and you can opt out at any time.

NAME
EMAIL


Try Imaris FREE for 10 days?