3D Tracking of Microglial Response to Neuroinflammation | Imaris

3D tracking of microglial response to neuroinflammation

Neurobiology

Dr. Stephen F. Traynelis, Dr. Stefka Gyoneva, and colleagues, Emory University School of Medicine

The figure shows a representative image of microglia in a LPS-injected mouse. The colour of the created Spots objects are is related to the distance of the Surfaces object.

Researchers led by Dr. Stephen F. Traynelis from Emory University School of Medicine, in collaboration with a team led by Katerina Akassoglou at the Gladstone Institute, recently used Imaris to track and image microglial responses to neuroinflammation in three dimensions. Their findings may help us to better understand the role of inflammation in neurodegenerative disease such as Alzheimer’s and Parkinson’s disease.

In a healthy body, microglia regularly scavenge the central nervous system looking for plaques, damaged neurons, or infectious agents that need to be cleared. However, when microglia are activated by neuroinflammation they change structure and function. These activated cells have been observed in much higher levels at sites of neurodegeneration in patients with neurodegenerative diseases, compared to healthy people.

To learn more about how microglia respond to tissue damage and cell death, the researchers acquired in vivo two-photon and confocal images of microglia in lipopolysaccharide (LPS)-treated mice, a model of peripherally-induced neuroinflammation. They turned to Imaris to create 3D reconstructions that let them examine the complex morphology of microglia and also to track the microglia, which are highly motile cells, over time.

Quantifying motility

To quantify the process motility patterns of microglia in the absence of tissue damage, the researchers created three-dimensional reconstructions of volumes imaged with two-photon microscopy and used Imaris to detect objects with a diameter larger than 2 microns. Then using Imaris Track Autoregressive Motion GapClose algorithm, these objects were tracked over time to determine the average length and speed of movement during the entire recording.

They also studied the dynamics of microglial processes that were activated by LPS. For this, they acquired confocal Z-plane stacks of primary microglial cells every 30 s and then analyzed these with Imaris. After subtracting the background, they generated Imaris Surface objects, three-dimensional representations of the cells from the z-stacks. To measure changes in cell ramification, the objects surface area-to-volume ratio was calculated at each time point.

The team then extended their findings to microglial response to tissue damage in acute brain slices. “Confocal imaging and reconstruction of the slices with Imaris provided excellent spatial and temporal resolution and tracking capabilities to study cell motion,” said Dr. Stefka Gyoneva, a member of the research team. “In addition, our analysis of microglial process movement in slices shows that brain slices provide a useful system for analysis of microglial function.”

Inflammation-induced changes

 

Tracking the movement of microglial processes over time showed that microglia in LPS-injected mice have hypermotile processes in the absence of tissue damage, but display a slower response to the damage after it is experimentally induced. “Our findings show that inflammation changes the morphology and motility of microglia,” said Dr. Gyoneva. “Since damage in the brain through the natural death of neurons occurs on a daily basis, microglia that are activated by neuroinflammation may be inefficient in responding to and clearing the damage, which could ultimately impair the function of surrounding neurons.”

 

After examining microglial motility in vivo in LPS-injected mice, the researchers studied microglial response to damage in mouse models of Parkinson's and Alzheimer's diseases (Gyoneva et al. 2013. Neurobiol Dis 67:191-202 and unpublished observations). This work showed that, similar to microglia in LPS-injected mice in vivo, microglia in mouse models of Parkinson's disease and Alzheimer's disease show a slower response to experimentally induced tissue damage that simulates neuronal death. The researchers conclude that microglia in a variety of diseases might have altered motility and reduced ability to respond to damage and in this way contribute to the progressive neurodegeneration.

Research paper: Gyoneva S, Davalos D, Biswas D, Swanger SA, Garnier-Amblard E, Loth F, Akassoglou K, Traynelis SF. 2014. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia. 62(8):1345-1360.

Multimedia Library
Application Images (9)
Publications Database
Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis
PERINATAL HIGH FAT DIET INCREASES HIPPOCAMPAL VULNERABILITY TO THE ADVERSE EFFECTS OF SUBSEQUENT HIGH-FAT FEEDING
HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice
3-D Imaging and Analysis of Neurons Infected In Vivo with Toxoplasma gondii
Rapid neurogenesis through transcriptional activation in human stem cells
Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis
The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density
Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO
Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D
Rax regulates hypothalamic tanycyte differentiation and barrier function in mice
Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration
RNA-binding protein Sam68 controls synapse number and local {beta}-actin mRNA metabolism in dendrites
Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells
Three-Dimensional Visualization of the Mouse Thymus Organization in Health and Immunodeficiency
Selective Ablation of Pillar and Deiters' Cells Severely Affects Cochlear Postnatal Development and Hearing in Mice
Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells
Enhanced Recruitment of Endosomal Na+/H+ Exchanger NHE6 into Dendritic Spines of Hippocampal Pyramidal Neurons during NMDA Receptor-Dependent Long-Term Potentiation
Shigella impairs T lymphocyte dynamics in vivo
Relapse Induced by Cues Predicting Cocaine Depends on Rapid, Transient Synaptic Potentiation
Purkinje Cell Ataxin-1 Modulates Climbing Fiber Synaptic Input in Developing and Adult Mouse Cerebellum

Sign up for the Bitplane Newsletter!

Receive articles like this one, release notes, product launches, press releases and more with our regular newsletter. It's free to subscribe, will be sent every 6 weeks, and you can opt out at any time.

NAME
EMAIL


Try Imaris FREE for 10 days?